codepad
[
create a new paste
]
login
|
about
Language:
C
C++
D
Haskell
Lua
OCaml
PHP
Perl
Plain Text
Python
Ruby
Scheme
Tcl
; belphegor primes (define (isqrt n) (if (not (and (positive? n) (integer? n))) (error 'isqrt "must be positive integer") (let loop ((x n)) (let ((y (quotient (+ x (quotient n x)) 2))) (if (< y x) (loop y) x))))) (define (square? n) (let ((n2 (isqrt n))) (= (* n2 n2) n))) (define (expm b e m) (define (m* x y) (modulo (* x y) m)) (cond ((zero? e) 1) ((even? e) (expm (m* b b) (/ e 2) m)) (else (m* b (expm (m* b b) (/ (- e 1) 2) m))))) (define (jacobi a m) (if (not (integer? a)) (error 'jacobi "must be integer") (if (not (and (integer? m) (positive? m) (odd? m))) (error 'jacobi "modulus must be odd positive integer") (let loop1 ((a (modulo a m)) (m m) (t 1)) (if (zero? a) (if (= m 1) t 0) (let ((z (if (member (modulo m 8) (list 3 5)) -1 1))) (let loop2 ((a a) (t t)) (if (even? a) (loop2 (/ a 2) (* t z)) (loop1 (modulo m a) a (if (and (= (modulo a 4) 3) (= (modulo m 4) 3)) (- t) t)))))))))) (define (strong-pseudoprime? n a) (let loop ((r 0) (s (- n 1))) (if (even? s) (loop (+ r 1) (/ s 2)) (if (= (expm a s n) 1) #t (let loop ((r r) (s s)) (cond ((zero? r) #f) ((= (expm a s n) (- n 1)) #t) (else (loop (- r 1) (* s 2))))))))) (define (selfridge n) (let loop ((d-abs 5) (sign 1)) (let ((d (* d-abs sign))) (cond ((< 1 (gcd d n)) (values d 0 0)) ((= (jacobi d n) -1) (values d 1 (/ (- 1 d) 4))) (else (loop (+ d-abs 2) (- sign))))))) (define (lucas p q m n) ; right-to-left (define (even e o) (if (even? n) e o)) (define (mod n) (if (zero? m) n (modulo n m))) (let ((d (- (* p p) (* 4 q)))) (let loop ((un 1) (vn p) (qn q) (n (quotient n 2)) (u (even 0 1)) (v (even 2 p)) (k (even 1 q))) ; (display un) (display " ") (display vn) (display " ") ; (display qn) (display " ") (display n) (display " ") ; (display u) (display " ") (display v) (display " ") ; (display k) (newline) (if (zero? n) (values u v k) (let ((u2 (mod (* un vn))) (v2 (mod (- (* vn vn) (* 2 qn)))) (q2 (mod (* qn qn))) (n2 (quotient n 2))) (if (even? n) (loop u2 v2 q2 n2 u v k) (let* ((uu (+ (* u v2) (* u2 v))) (vv (+ (* v v2) (* d u u2))) (uu (if (and (positive? m) (odd? uu)) (+ uu m) uu)) (vv (if (and (positive? m) (odd? vv)) (+ vv m) vv)) (uu (mod (/ uu 2))) (vv (mod (/ vv 2)))) (loop u2 v2 q2 n2 uu vv (* k q2))))))))) (define (powers-of-two n) (let loop ((s 0) (n n)) (if (odd? n) (values s n) (loop (+ s 1) (/ n 2))))) (define (strong-lucas-pseudoprime? n) ; assumes odd positive integer not a square (call-with-values (lambda () (selfridge n)) (lambda (d p q) (if (zero? p) (= n d) (call-with-values (lambda () (powers-of-two (+ n 1))) (lambda (s t) (call-with-values (lambda () (lucas p q n t)) (lambda (u v k) (if (or (zero? u) (zero? v)) #t (let loop ((r 1) (v v) (k k)) (if (= r s) #f (let* ((v (modulo (- (* v v) (* 2 k)) n)) (k (modulo (* k k) n))) (if (zero? v) #t (loop (+ r 1) v k)))))))))))))) (define prime? (let ((ps '(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97))) (lambda (n) (if (not (integer? n)) (error 'prime? "must be integer")) (if (or (< n 2) (square? n)) #f (let loop ((ps ps)) (if (pair? ps) (if (zero? (modulo n (car ps))) (= n (car ps)) (loop (cdr ps))) (and (strong-pseudoprime? n 2) (strong-pseudoprime? n 3) (strong-lucas-pseudoprime? n)))))))) (define (belphegor x) (let ((n (+ (expt 10 (+ x x 4)) (* 666 (expt 10 (+ x 1))) 1))) n)) (do ((n 0 (+ n 1))) (#f) (when (prime? (belphegor n)) (display n) (newline)))
Private
[
?
]
Run code
Submit