```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 ``` ```from __future__ import division from math import sqrt, pi, sin, cos, atan def signum(x): if x < 0: return -1 if x > 0: return 1 return 0 def moon(B5, L5, H, Mo, D, Y): # lat, long, hours west of GMT, month, day, year # positive latitude is north, negative latitude is south # positive longitude is east, negative longitude is west # lat and long given in degrees and decimals of a degree # GOSUB 170 constants Ma = [[0] * 4 for _ in range(4)] # we dimension to 4 instead of 3 because BASIC # arrays are 1-based and Python arrays are 0-based P2 = 2 * pi R1 = pi / 180 K1 = 15 * R1 * 1.0027379 L5 = L5 / 360 Z0 = H / 24 # GOSUB 760 calendar to julian date G = 1 if Y < 1582: G = 0 D1 = int(D); F = D - D1 - 0.5 J = -1 * int(7 * (int((Mo+9)/12) + Y) / 4) # ??? J3 = 0 # not initialized in BASIC program if G != 0: S = signum(Mo - 9) A = abs(Mo - 9) J3 = int(Y + S * int(A / 7)) J3 = -1 * int((int(J3 / 100) + 1) * 3/4) J = J + int(275 * Mo / 9) + D1 + G * J3 J = J + 1721027 + 2*G + 367*Y if F < 0: F = F + 1 J = J - 1 T = (J - 2451545) + F # GOSUB 245 lunar sidereal time at GMT time zone T0 = T / 36525 S = 24110.5 + 8640184.813 * T0 S = S + 86636.6 * Z0 + 86400 * L5 S = S / 86400 S = S - int(S) T0 = S * 360 * R1 T = T + Z0 # POSITION LOOP for I in range(1, 4): # GOSUB 495 fundamental arguments L = 0.606434 + 0.03660110129 * T M = 0.374897 + 0.03629164709 * T F = 0.259091 + 0.03674819520 * T D = 0.827362 + 0.03386319198 * T N = 0.347343 - 0.00014709391 * T G = 0.993126 + 0.00273777850 * T L = L - int(L); M = M - int(M) F = F - int(F); D = D - int(D) N = N - int(N); G = G - int(G) L = L * P2; M = M * P2; F = F * P2 D = D * P2; N = N * P2; G = G * P2 V = 0.39558 * sin(F + N) V = V + 0.08200 * sin(F) V = V + 0.03257 * sin(M - F - N) V = V + 0.01092 * sin(M + F + N) V = V + 0.00666 * sin(M - F) V = V - 0.00644 * sin(M + F - 2*D + N) V = V - 0.00331 * sin(F - 2*D + N) V = V - 0.00304 * sin(F - 2*D) V = V - 0.00240 * sin(M - F - 2*D - N) V = V + 0.00226 * sin(M + F) V = V - 0.00108 * sin(M + F - 2*D) V = V - 0.00079 * sin(F - N) V = V + 0.00078 * sin(F + 2*D + N) U = 1 - 0.10828 * cos(M) U = U - 0.01880 * cos(M - 2*D) U = U - 0.01479 * cos(2*D) U = U + 0.00181 * cos(2*M - 2*D) U = U - 0.00147 * cos(2*M) U = U - 0.00105 * cos(2*D - G) U = U - 0.00075 * cos(M - 2*D + G) W = 0.10478 * sin(M) W = W - 0.04105 * sin(2*F + 2*N) W = W - 0.02130 * sin(M - 2*D) W = W - 0.01779 * sin(2*F + N) W = W + 0.01774 * sin(N) W = W + 0.00987 * sin(2*D) W = W - 0.00338 * sin(M - 2*F - 2*N) W = W - 0.00309 * sin(G) W = W - 0.00190 * sin(2*F) W = W - 0.00144 * sin(M + N) W = W - 0.00144 * sin(M - 2*F - N) W = W - 0.00113 * sin(M + 2*F + 2*N) W = W - 0.00094 * sin(M - 2*D + G) W = W - 0.00092 * sin(2*M - 2*D) # compute right ascension, declination, distance S = W / sqrt(U - V*V) A5 = L + atan(S / sqrt(1 - S*S)) S = V / sqrt(U); D7 = atan(S / sqrt(1 - S*S)) R5 = 60.40974 * sqrt(U) Ma[I][1] = A5 Ma[I][2] = D7 Ma[I][3] = R5 T = T + 0.5 if Ma[2][1] <= Ma[1][1]: Ma[2][1] = Ma[2][1] + P2 if Ma[3][1] <= Ma[2][1]: Ma[3][1] = Ma[3][1] + P2 Z1 = R1 * (90.567 - 41.685 / Ma[2][3]) S = sin(B5 * R1); C = cos(B5 * R1) Z = cos(Z1); M8 = 0; W8 = 0 A0 = Ma[1][1]; D0 = Ma[1][2] V0 = 0 # not initialized in BASIC program for C0 in range(0, 24): P = (C0 + 1) / 24 F0 = Ma[1][1]; F1 = Ma[2][1]; F2 = Ma[3][1] A = F1 - F0; B = F2 - F1 - A F = F0 + P * (2*A + B*(2*P-1)) A2 = F F0 = Ma[1][2]; F1 = Ma[2][2]; F2 = Ma[3][2] A = F1 - F0; B = F2 - F1 - A F = F0 + P * (2*A + B*(2*P-1)) D2 = F # GOSUB 285 test an hour for an event L0 = T0 + C0 * K1; L2 = L0 + K1 if A2 != 0: A2 = A2 + 2*pi H0 = L0 - A0; H2 = L2 - A2 H1 = (H2 + H0) / 2 # hour angle D1 = (D2 + D0) / 2 # declination if C0 <= 0: V0 = S * sin(D0) + C * cos(D0) * cos(H0) - Z V2 = S * sin(D2) + C * cos(D2) * cos(H2) - Z if signum(V0) != signum(V2): V1 = S * sin(D1) + C * cos(D1) * cos(H1) - Z A = 2*V2 - 4*V1 + 2*V0; B = 4*V1 - 3*V0 - V2 D = B*B - 4*A*V0 if D >= 0: D = sqrt(D) if V0 < 0 and V2 > 0: print "MOONRISE AT", if V0 < 0 and V2 > 0: M8 = 1 if V0 > 0 and V2 < 0: print "MOONSET AT", if V0 > 0 and V2 < 0: W8 = 1 E = (-1*B + D) / (2 * A) if E > 1 or E < 0: E = (-1*B - D) / (2 * A) T3 = C0 + E + 1/120 H3 = int(T3); M3 = int((T3 - H3) * 60) print H3, ":", M3, H7 = H0 + E * (H2 - H0) N7 = -1 * cos(D1) * sin(H7) D7 = C * sin(D1) - S * cos(D1) * cos(H7) A7 = atan(N7 / D7) / R1 if D7 < 0: A7 = A7 + 180 if A7 < 0: A7 = A7 + 360 if A7 > 360: A7 = A7 - 360 print ", AZ", A7 A0 = A2; D0 = D2; V0 = V2 # GOSUB 450 special message if M8 != 0 or W8 != 0: if M8 == 0: print "NO MOONRISE THIS DATE" if W8 == 0: print "NO MOONSET THIS DATE" else: if V2 < 0: print "MOON DOWN ALL DAY" if V2 > 0: print "MOON UP ALL DAY" # st louis, today # moonrise 9:45am at 79 degrees # moonset 10:56pm at 278 degrees moon(38.6272, -90.1978, 6, 7, 1, 2014) """ original MOONSET AT 3 : 20 , AZ 283.582080498 MOONRISE AT 14 : 10 , AZ 76.4089171772 MOONSET AT 23 : 54 , AZ 352.419669998 With proper division MOONRISE AT 9 : 26 , AZ 94.826201561 NO MOONSET THIS DATE after changing F3 into F2 MOONRISE AT 8 : 45 , AZ 79.0365799623 MOONSET AT 21 : 56 , AZ 278.500111059 """ ```
 ```1 2 ``` ```MOONRISE AT 8 : 45 , AZ 79.0365799623 MOONSET AT 21 : 56 , AZ 278.500111059 ```